Class DensityBasedClustering<T extends Clusterable>
java.lang.Object
com.evolveum.midpoint.model.impl.mining.algorithm.cluster.mechanism.Clusterer<T>
com.evolveum.midpoint.model.impl.mining.algorithm.cluster.mechanism.DensityBasedClustering<T>
Performs density-based clustering of data points based on specified parameters and distance measure.
This class implements the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm.
-
Constructor Summary
ConstructorDescriptionDensityBasedClustering
(double eps, int minPts, DistanceMeasure measure, int minRolesOverlap) Constructs a DensityBasedClustering instance with the specified parameters. -
Method Summary
Modifier and TypeMethodDescriptioncluster
(Collection<T> points, RoleAnalysisProgressIncrement handler) Performs density-based clustering on the provided collection of data points.
-
Constructor Details
-
DensityBasedClustering
Constructs a DensityBasedClustering instance with the specified parameters.- Parameters:
eps
- The epsilon parameter for distance-based clustering.minPts
- The minimum number of points required to form a dense cluster.measure
- The distance measure for clustering.minRolesOverlap
- The minimum properties overlap required for adding a point to a cluster.
-
-
Method Details
-
cluster
Performs density-based clustering on the provided collection of data points.- Specified by:
cluster
in classClusterer<T extends Clusterable>
- Parameters:
points
- The collection of data points to cluster.handler
- The progress increment handler for tracking the execution progress.- Returns:
- A list of clusters containing the clustered data points.
-