Class DensityBasedClustering<T extends Clusterable>

java.lang.Object
com.evolveum.midpoint.model.impl.mining.algorithm.cluster.mechanism.Clusterer<T>
com.evolveum.midpoint.model.impl.mining.algorithm.cluster.mechanism.DensityBasedClustering<T>

public class DensityBasedClustering<T extends Clusterable> extends Clusterer<T>
Performs density-based clustering of data points based on specified parameters and distance measure. This class implements the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm.
  • Constructor Details

    • DensityBasedClustering

      public DensityBasedClustering(double eps, int minPts, DistanceMeasure measure, int minRolesOverlap)
      Constructs a DensityBasedClustering instance with the specified parameters.
      Parameters:
      eps - The epsilon parameter for distance-based clustering.
      minPts - The minimum number of points required to form a dense cluster.
      measure - The distance measure for clustering.
      minRolesOverlap - The minimum properties overlap required for adding a point to a cluster.
  • Method Details

    • cluster

      public List<Cluster<T>> cluster(Collection<T> points, RoleAnalysisProgressIncrement handler)
      Performs density-based clustering on the provided collection of data points.
      Specified by:
      cluster in class Clusterer<T extends Clusterable>
      Parameters:
      points - The collection of data points to cluster.
      handler - The progress increment handler for tracking the execution progress.
      Returns:
      A list of clusters containing the clustered data points.